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Motivation
• Despite the unchallenged performance,

deep neural network (DNN) based object
detectors (OD) for computer vision have
inherent, hard-to-verify limitations like
brittleness, opacity, and unknown behavior
on corner cases.

• Operation-time safety measures like
monitors will be inevitable—even
mandatory—for use in safety-critical
applications like automated driving (AD).

Solution
• We proposed an approach for

plausibilization of OD detections using a
small model-agnostic, robust, interpretable,
and domain-invariant image classification
model.

• The safety requirements of interpretability
and robustness are achieved by using a
small concept bottleneck model (CBM), a
DNN intercepted by interpretable
intermediate outputs.

• Concept extraction with Color-Invariant
Convolutional layer (CIConv) [2] approach
increased the robustness of Concept
Bottleneck Models (CBMs) [3] against
domain shifts, thus enabling their
application to diverse Automated Driving
(AD) settings.

Experiments
• Learning Robust Concept Representations,

Comparison of Object Class Prediction
Accuracy on Broden Test Data [4]

• Comparison of fine-tuning (FT) and zero-shot
false positive monitoring for SqueezeDet (SDet)
[5] on KITTI easy [6].

Conclusion
• The plausibilisation with monitoring

approach was identified as a promising
method for error detection in object
detection during operation.

References:
[1] Keser et al. Interpretable Model-Agnostic Plausibility Verification
for 2D Object Detectors Using Domain-Invariant Concept Bottleneck
Models, CVPRW, 2023
[2] Lengyel, Attila, et al. "Zero-shot day-night domain adaptation with
a physics prior." Proceedings of the IEEE/CVF International Conference
on Computer Vision. 2021
[3] Koh, Pang Wei, et al. "Concept bottleneck models." International
Conference on Machine Learning. PMLR, 2020
[4] Bau, David, et al. "Network dissection: Quantifying interpretability
of deep visual representations." Proceedings of the IEEE conference
on computer vision and pattern recognition. 2017.
[5] Wu, Bichen, et al. "Squeezedet: Unified, small, low power fully
convolutional neural networks for real-time object detection for
autonomous driving." Proceedings of the IEEE conference on computer
vision and pattern recognition workshops. 2017
[6] Geiger, Andreas, et al. "Vision meets robotics: The kitti
dataset." The International Journal of Robotics Research 32.11 (2013):
1231-1237.

1.13 Object Detection Plausibility 
with Concept-Bottleneck Models [1]

Mert Keser, Gesina Schwalbe, Azarm Nowzad | Continental AG
Alois Knoll | Technical University of Munich

For more information contact: 
mert.keser@continental-corporation.com

Figure 1: Proposed interpretable, model-agnostic monitoring 
approach for identification of false positive person detections. It uses 
an interpretable concept bottleneck model (CBM) as independent 
classifier on the color-invariant representations (CI-repr) of the object
detections (here: for class person) (© Continental AG)
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Figure 2: Different perturbations on the Broden Test Data [4]            
(© Continental AG) 

Figure 3: Different type of false positive detections (© Continental AG)

Table 2: Comparison of fine-tuning (FT) and zero-shot false positive
monitoring for SqueezeDet (SDet) on KITTI easy. Bold numbers
highlight best-performing method for each metric and task.               
(© Continental AG)

Table 1: Object class prediction accuracy comparison between
vanilla CBM and CBM with CIConv layer on Broden test data
with applied corruptions (severity=3). Bold numbers highlight the
best prediction performance for each class and corruption type.
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