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Motivation Methodology

Our goal 1s to produce plausible trajectories « Refinement layers produce trajectories by
for motion forecasting by adhering to physical performing pruning on the trajectory set.
and environmental constraints. We propose a « Goal positions through lane centerlines are
method that integrates explicit knowledge encoded via LSTM which represent the
priors, ensuring predictions comply with probable travel direction of an actor.
vehicle kinematics and driving environment « Together with goal lanes and pruned
geometry. Our approach includes a trajectories we fuse both these information
nonparametric pruning layer and attention via transformer-based attention layers.
layers to Incorporate these priors. This ensures « Other actor’s past observations are also
reachability guarantees for traffic actors In encoded using LaneGCN[1] backbone which
various scenarios, leading to accurate and safe Is then trained In an end-to-end manner
predictions vital for autonomous vehicle safety with the rest of the network.

and efficiency. In essence, we present a e Learning is done via maximum entropy
method that prevents off-road predictions by where the loss function motivates the
embedding knowledge priors into the training network to assign higher probabilities to
process for reliable motion forecasting. feasible trajectories with a small distance to

the ground truth trajectory.
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Results
Our primary objective is to prevent off-road
predictions, which is reflected in our high
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X >< X x x Driving Area Compliance (DAC) score of 0.99.
quure 1: The.green area del.meates t{v.e local buffer polygon, non- This score suggests that our method effectively
drivable regions. The blue linear entities correspond to the lane .
boundaries. Subsequently, the peripheries of the green polygons excludes nearly all unfeasible states from the
undergo collision detection analysis to expedite pruning. (© FZI) prediction Space utilized by the network. This

Indicates that our approach effectively
Objective eliminates almost all infeasible reachable
* Predict trajectories for an actor using the states from the prediction space used by the
kinematic compliant trajectories that also network.
respect the environmental boundaries. References:
o Trajecto ry sets contain kinematic motions [1] M. Liang et al., “Learning lane graph representations for motion
. . . . forecasting,” in Computer Vision — ECCV 2020
which are then checked for collision with : P
the green area as shown in Fig 1. e iyers

LanasCN

Lams-Trajectony
Intaraciion

: s
Lane . 3 MLilti Head Cross
Encoder | Altariban

| Trajectory || | MAulti Head Sel
Encoder | ! Attantion

Trageciony-Tragaciory

A/

f‘-

Soal
Larnes

L

~
A

&

|

|

I : I Lamne Embeddings — Rafined Tragactones

|

- |

I | —

- m"ﬂm#' il ! Trajectory Embeddings
I |

| . -

| | Local Bufler Polygans | | MHSA Embeddings

| ¥ : -

! Main Palygons |,

T s o e s - e —

Figure 2: High-level overview of the architecture. The refinement layer takes two inputs. 1. Lane centerline points for a given query window and 2.
trajectory sets with an € = 2m coverage. The refinement layer produces feasible/pruned trajectories by constructing a lane boundary given the lane-
centerline points. (© FZI)
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For more information contact:
Vivekanandan@fzi.de
Hubschnelder@fzi.de

Supported by:

% Federal Ministry
for Economic Affairs
and Climate Action

KI Wissen Is a project of the KI Familie. It was initiated and developed I(I
by the VDA Leitinitiative autonomous and connected driving and FAMILIE
Is funded by the Federal Ministry for Economic Affairs and Climate Action.

Funded by
the European Union  bythe German Bundestag

NextGenerationEU

on the basis of a decision

www.kiwissen.de X @KI_Familie {3 ki Familie v DA

LEITINITIATIVE



