KI Wissen Final Event | 21-22 March 2024

Efficient Pedestrian Detection with Inter-stage Knowledge Integration

KI

ι**λ/Ι**ςςFN

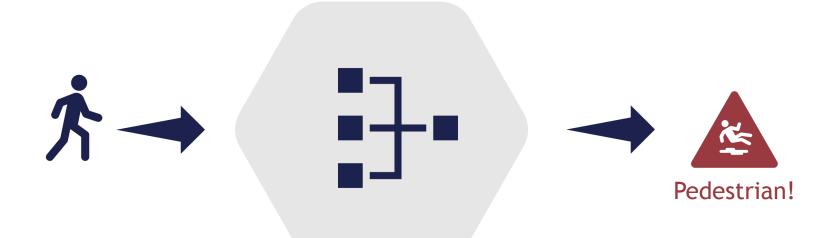
Automotive AI Powered by Knowledge

Abdul Hannan Khan | DFKI

Pedestrian Detection

Pedestrian Detection: The Problem

- Detect and Localize pedestrians in a given scene
- Not only limited to autonomous driving
- Tolerate riders, seated pedestrians and reflections



Pedestrian Detection: Challenges

- Challenges
 - Heavy Occlusions
 - Motion Blur
 - Higher Inference Time

Crowd

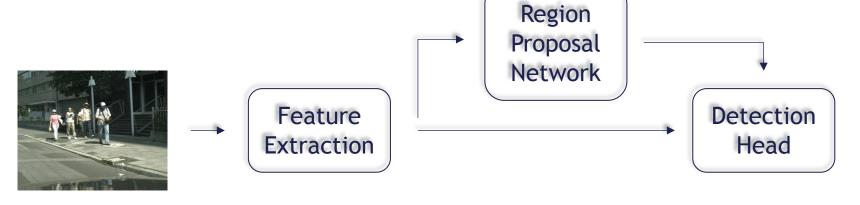
Heavy Occlusion

Pedestrian Detection: Datasets

Dataset	Images	Pedestrians	Resolution
Caltech Pedestrian ⁴	42,782	13,674	640 x 480
City Persons ⁵	2,975	19,238	2048 x 1024
Euro City Persons ⁶	21,795	201,323	1920 x 1024

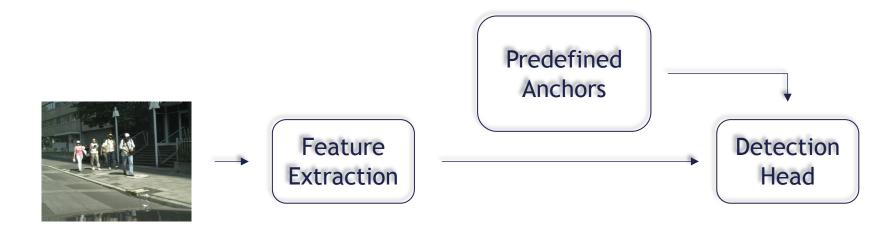
Existing Solutions: Two Stage Architectures

- **Higly Performant** •
- **Computationally Expensive** ٠
- Redundant Bounding Box Regression •



Existing Solutions: Single Stage Architectures

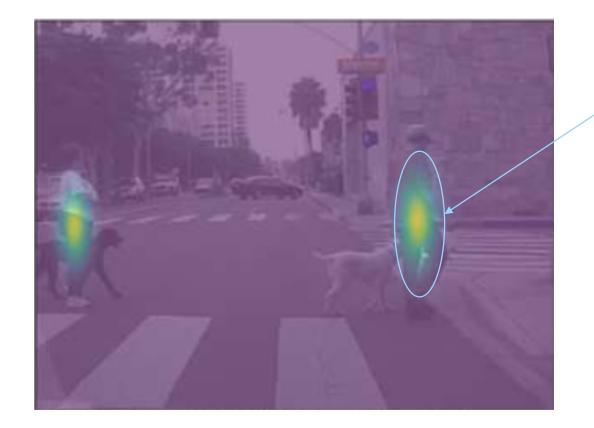
- Faster than two-stage architectures
- Performance drop



Existing Solutions: Anchor Free Architectures

- No Achors
- Hard Centers are hard to learn

Existing Solutions: Archor Free Architectures



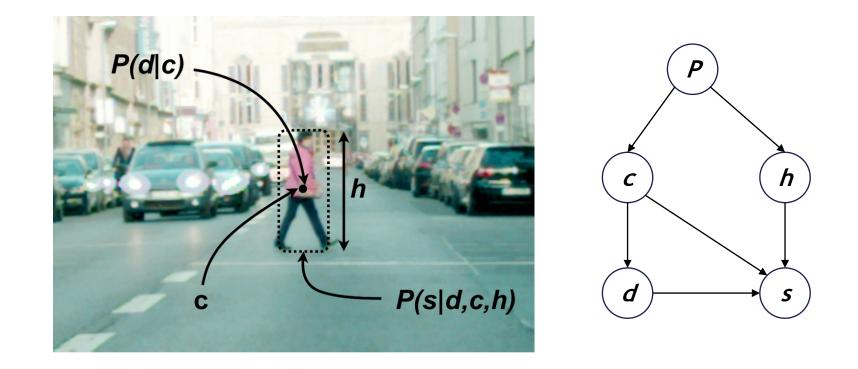
Gaussian based Soft Centres

Increased False Positives!

*Image is taken from CSP²

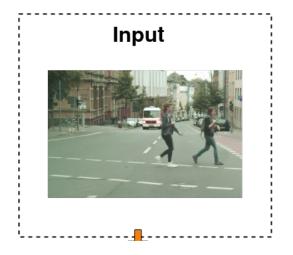
F2DNet: Fast Focal Detection Network

F2DNet: Two Stage & Anchor Free



$$P(\neg s, d|c, h) = P(\neg s|d, c, h)P(d|c)$$

F2DNet: Two Stage & Anchor Free



F2DNet: Efficiency and Performance

- Better results compared to Pedestron
- The time is reported on Nvidia GTX-1080Ti
- F2DNet takes on average ~28% lesser time compared to Cascade R-CNN¹

suc	Method	Reasonable	Small	Heavy	Inference
City Persons	Pedestron ¹	11.2	14.0	37.0	0.73s
ک لو	BGCNet ³	8.8	11.6	43.9	-
Cit	F2DNet	8.7	11.3	32.6	0.44s
C	Method	Reasonable	Small	Heavy	Inference
Caltech	Pedestron ¹	6.2	7.4	55.3	0.20s
Calt	CSP ²	5.0	6.8	46.6	-
U	F2DNet	2.2	2.5	38.7	0.14s
	Method	Reasonable	Small	Heavy	Inference
ECP	Pedestron ¹	6.6	13.6	33.3	0.44s
	F2DNet	6.1	10.7	28.2	0.41s

Measure: MR^{-2} Lower is better

LSFM: Localized Semantic Feature Mixers

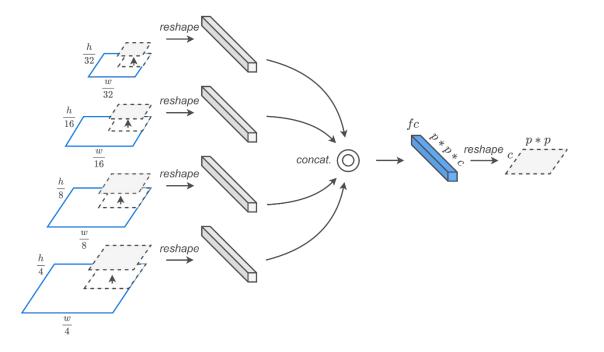
3

LSFM: Localized Semantic Feature Mixers

- MLPMixers⁷ based pedestrian detection architecture
- Uses highly efficient feature enrichment neck
- Uses high-level semantic feature representation of pedestrians
- Works with batches of patches (super pixels) to improve local information flow and increase cache efficiency

LSFM: Super Pixel Pyramid Pooling

- Combines patches from different backbone stages into unified representation called Super Pixels
- Single fully-connected layer for feature enrichment and filtering
- Performant and cache efficient



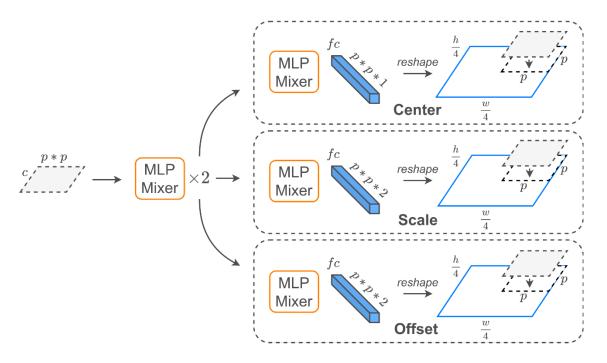
KI Wissen Final Event | Efficient Pedestrian Detection with Inter-stage Knowledge Integration

1.9

Poster

LSFM: Dense Focal Detection Network

- Anchor-free detection head
- MLPMixers⁷ blocks to boost performance
- Works on patches to improve efficiency and boost local information flow



1.9

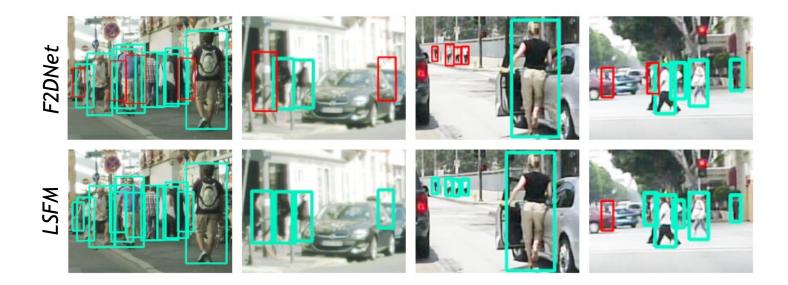
Poster

LSFM: ConvMLP Pin Backbone & Hard Mixup Augmentation

- ConvMLP Pin
 - Based on ConvMLP⁸
 - Uses MLPMixers⁷ with convolutions to be applicable for variable sized input
 - Deep yet not wide backbone to learn high-level semantic features while being efficient
- Hard Mixup Augmentation
 - To boost performance in small and heavily occluded cases

LSFM: Qualitative Comparison

- Cyan shows true positives & red indicate false negatives
- LSFM performs significantly better than F2DNet
- Some hard cases where LSFM misses pedestrian as well
- Few very rare cases where F2DNet detects pedestrian while LSFM misses



KI Wissen Final Event | Efficient Pedestrian Detection with Inter-stage Knowledge Integration

1.9

Poster

LSFM: Quantitative Comparison

- Beats SOTA in popular pedestrian datasets
- Beats human baseline on Caltech dataset⁴
- 55% lesser inference time

Measure: MR^{-2}	
Lower is better	

suc	Method	Reasonable	Small	Heavy	Inference
ersoi	Pedestron ¹	8.9	10.6	29.6	0.73s
y Pe	F2DNet	6.8	9.0	26.0	0.44s
City	LSFM	6.7	6.7	23.5	0.18s

ح	Method	Reasonable	Small	Heavy	Inference
altech	Pedestron ¹	2.6	2.8	24.4	0.20s
Calt	F2DNet	1.2	1.4	19.6	0.14s
	LSFM	1.0	0.2	19.5	0.09s

	Method	Reasonable	Small	Heavy	Inference
Ъ	F2DNet	6.0	11.1	29.1	0.41s
EC	Pedestron ¹	4.7	10.2	24.7	0.44s
	LSFM	4.1	9.5	20.9	0.17s

LSFM for Traffic Object Detection

4

Traffic Object Detection

- Traffic actors belong to multiple classes, although pedestrians are most risky, collision with other objects must be avoided as well.
- Due to increased number of constraints, architectures which perform well for pedestrian detection should generalize well to other objects.
- Existing object detectors are performant but far away from being real-time which is critical for autonomous driving.

Traffic Object Detection

- Extend state-of-the-art pedestrian detection model LSFM to enable multiclass object detection.
- Instead of predicting pedestrian or background predict K class probabilities.
- Class normalized focal loss instead of class agnostic instance normalized focal loss.

$$L_{center} = \frac{1}{C} \sum_{c} \frac{1}{K_c} \sum_{t} \alpha_c(t) F L_c(p_t, y_t)$$

Traffic Object Detection Results

- Beats state-of-the-art object detectors with significant margin
- Inference time is based on RTX 3090 with single sample per batch

[6]	Method	mAP	mAP50	mAP75	fps	RTOP
ic	Cascade RCNN	57.9	82.7	66.6	6.7	33.8
Traffic	LSFM	60.4	85.7	70.0	11.2	39.1
T-ULT	YOLOv3	56.8	85.4	64.1	14.9	40.1
F	LSFM P	56.9	83.7	64.4	33.3	56.9

[0	Method	mAP	mAP50	mAP75	fps	RTOP
e [10]	Cascade RCNN	47.9	-	-	12.1	31.7
ag€	LSFM	48.1	76.2	51.9	14.3	33.5
Nulmage	YOLOv3	41.8	71.1	43.0	20.5	33.6
Z	LSFM P	46.1	74.6	48.7	30.3	46.1

1]	Method	mAP	mAP50	mAP75	fps	RTOP
BDD100K [11]	Cascade RCNN	32.4	-	-	14.3	22.6
100	LSFM	31.5	59.1	29.0	17.4	23.6
DD1	YOLOv3	27.5	54.5	23.8	32.4	27.5
BI	LSFM P	28.2	55.7	24.4	32.6	28.2

Traffic Object Detection Results

Demonstration

- AVL AD Stack
 - Carla
 - Object Detection
 - 1. LSFM -> 2D detections
 - 2. Capgemini solution -> 3D detections
 - 3. Published to -> AD Stack

Knowledge Building Blocks

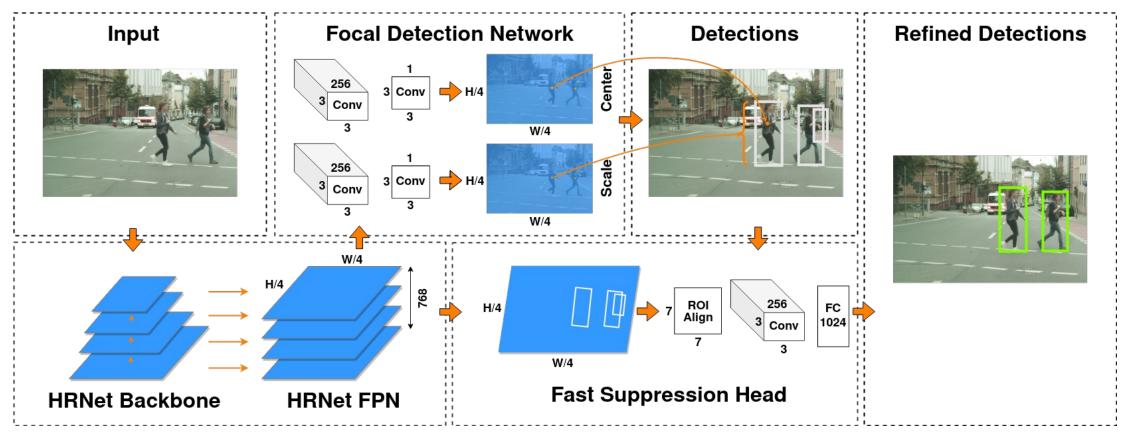
6

Knowledge Building Blocks

ID	Knowledge Description (Machine Readable)	Knowledge Representatio n (Human Readable)	Use Case (Operational Design Domain (ODD))	Integration Method
~KB0039	Object & Environment Interaction resulting in Silhouette & Gradients	Object Contours	Traffic Object Detection	Networks Inside Network

Knowledge Building Blocks

• Inter-stage Knowledge



>> Thank You!

References

F2DNet | Khan, Abdul Hannan et al. F2DNet: Fast Focal Detection Network for Efficient Pedestrian Detection. ICPR 2022.

LSFM | Khan, Abdul Hannan et al. Localized Semantic Feature Mixers for Efficient Pedestrian Detection in Autonomous Driving. CVPR 2023.

¹Hasan, Irtiza et al. Generalizable Pedestrian Detection: The Elephant In The Room, CVPR 2021.

²Liu, Wei et al. High-Level Semantic Feature Detection: A New Perspective for Pedestrian Detection. CVPR 2019.

³Li, Jinpeng et al. Box Guided Convolution for Pedestrian Detection. ACM MM 2020.

⁷Tolstikhin, Ilya O., et al. Mlp-mixer: An all-mlp architecture for vision. NIPS 2021.

⁸Li, Jiachen, et al. Convmlp: Hierarchical convolutional mlps for vision. arXiv 2021.

⁴Caltech Pedestrians

https://data.caltech.edu/records/f6rph-90m20

⁵City Persons

https://www.v7labs.com/open-datasets/citypersons

- ⁶Euro City Persons
- https://eurocity-dataset.tudelft.nl/

⁹TJU DHD Traffic

https://github.com/tjubiit/TJU-DHD

- ¹⁰Nulmages
- https://www.nuscenes.org/nuimages

¹¹**BDD100K**

https://www.bdd100k.com/

Abdul Hannan Khan | DFKI | Hannan.Khan@dfki.de

KI Wissen is a project of the KI Familie. It was initiated and developed by the VDA Leitinitiative autonomous and connected driving and is funded by the Federal Ministry for Economic Affairs and Climate Action.

Federal Ministry for Economic Affairs and Climate Action

Supported by:

Funded by the European Union NextGenerationEU

on the basis of a decision by the German Bundestag

www.kiwissen.de

X @KI_Familie

in KI Familie