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Introduction
Hypothesis and Questions

• Question 1: Can we extract the concepts from a DNN model robustly?

• Question 2: Can we use the concept to detect/show failures?
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Hypothesis

DNNs learn (semantic) concepts to detect objects, which are embedded in the latent space
in different layers and thus learn a relationship between concepts and classes (objects).



Introduction
What are Concepts?
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ML Model
Person

Other

Semantic concept, e.g. „wheel“

Association with latent space representation

Domain of XAI
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Explainable decision system = There exists a

• mechanism providing an explanation 

(= explanator)

• to a human (= explainee)

• that allows them to understand 

• one of (= explanandum)

• the model resp. parts thereof,

• evidence for a model output, or

• the context of the system’s reasoning.

Understanding = successful update of mental 

model; can be

• mechanistical = how it works, or

• functional = what is its purpose

Levels of transparency of a model

(= mechanistic understanding):

• simulatable (= understandable as a whole)

• decomposable (into simulatable parts)

• algorithmically transparent (= mathematical 

understanding)

XAI = lots of cognitive 
science!

Introduction
Explainable Artificial Intelligence (XAI)



Introduction
XAI Method Landscape

KI Wissen Final Event | Advancements of Local and Global Explanation Methods for Failure Case Detection 9

Explanator

Metrics:
How good should it be?

What task?
• inputs
• outputs

Explainee & goal?

Problem?

Explanandum 
transparency:
Intrinsic or post-hoc?

What part should be 
explained?
• representation
• processing
• training progress
• …

Presentation? (visual, text, …) Interactivity?

How is it explained?
• (contrastive) ex.
• prototypes
• feature importance maps
• rules
• …

Locality?
global (How?) vs. 
local (Why?)

Portability? (model access)

G. Schwalbe and B. Finzel, A Comprehensive Taxonomy for Explainable Artificial 
Intelligence: A Systematic Survey of Surveys on Methods and Concepts, 2022.
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XAI Method Landscape
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G. Schwalbe and B. Finzel, A Comprehensive Taxonomy for Explainable Artificial 
Intelligence: A Systematic Survey of Surveys on Methods and Concepts, 2022.



Introduction
Pipeline Towards Failure Case Detection
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Concept 
extraction

Concept 
stability

Concept 
similarity

Concept 
attribution

Analysis

Mine or define
concept

Concept must be
robustly extracted

Concept shall be
learned consistently

Where are the
concepts (spatially)

How concepts
are used
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Concept Stability and Similarity
Latent Space Analysis: Concept Embedding Analysis
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• Goal: Associate semantic concept w/ latent space vector / subspace

• Idea: Vector as parameters of simple predictor for concept (concept model)

main task concept at …

or

concept 
present?

Concept model

=

"woodish"

"greenish"

"treeish"𝑤w 𝑤t ≈ 𝑤w + 𝑤g
𝑤g

behaves like word 
vector space
(see e.g. (Fong & Vedaldi
2018))

Main types of concept models:

Clustering &
matrix factorization

e.g. ACE (Ghorbani et al. 2019),

NCAV (Zhang et al. 2021)

Linear
𝑓! = ⋅ ∘ 𝑤!+𝑡!

e.g. TCAV (Kim et al. 2018), 
Net2Vec (Fong & Vedaldi 2018)(Xiao et al. 2018), p. 6, Fig. 3

TexturesO
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t(
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rt

)s

Some concept types



Concept Stability and Similarity
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Manual
Concept Images

Supervised CA [1]Unsupervised CA [2]

Concept 
Retrieval 
Stability

Discovered
Concept Images

Concept Analysis Data

Concept 
Attribution 

Stability
Test Images

• Unsupervised CA – concept discovery

• Supervised CA – extraction of user-defined concepts

Benefits: Combine strengths of concept extraction and discovery with minimal manual effort.

[1] Kim, Been, et al. "Interpretability beyond feature attribution: 
Quantitative testing with concept activation vectors (tcav).", 2018.

[2] Zhang, Ruihan, et al. "Invertible concept-based explanations for 
cnn models with non-negative concept activation vectors.“, 2021.



Concept Stability and Similarity
Results: Concept Stability
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• 1D-CAVs are the most stable
• Faster to evaluate, need less 

memory.

• 40 (ideally more than 60) concept 
samples for high stability

• Network architecture has impact on 
behavior of stability

• E.g., top-stability is achieved in 
different relative backbone 
depth



Concept Stability and Similarity
Concept-based Semantics Comparison
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Model 2

Model 1

Concept Vectors 1

Concept Vectors 2

Concept 
Extraction 

Images

Test 
Images

Test Activations 1

Test Activations 2

Concept 
Attributions 1

Concept 
Attributions 2

Estimation of 
Similarity

Indirect feature space comparison via semantic concepts and sample attributions



Concept Stability and Similarity
Results: Unsupervised Saliency-based Similarity
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• Test data diversity impacts the complexity of further inspection.
• Different (architecture-wise) networks learn similar concepts:

• Trained on MS COCO, discovered similar concepts in CelebA

Similar concepts in CelebA

Similar concepts in MS COCO



Concept Attribution 
and Analysis
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Concept Attribution and Analysis
Feature Saliency: Backpropagation-based
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• Idea:

• Trace back influence (=Relevance) 

of activations from output to input

• Total relevance within a layer 𝑙
stays constant:

𝑓 𝑥 = ⋯ = ∑" 𝑅"
($%&) = ∑" 𝑅"$

• One additional backwards-pass

• Requires access to model internals

• Backpropagation functions must 

be chosen carefully

wrt. layer type and question

(Montavon et al. 2019), Fig. 10.2

(Montavon et al. 2019), Fig. 10.5



Concept Attribution and Analysis
Concept Decomposition and Testing
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• Concept Decomposition

• Conv-filter-conditioned local attribution

• Assigning filters to concepts

• Testing for specific concepts

• arbitrary choice of predefined concept

• Attribution for global concept encoding



Concept Attribution and Analysis
Concept Analysis Using Clustering
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Explaining “Person”



Concept Attribution and Analysis
Concept Analysis Using Clustering
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Tennis/Baseball/…

Skating

with Horses

Motorbike

Team sport

Skiing



Concept Attribution and Analysis
Concept Analysis Using Clustering
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Conclusion and Outlook
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Conclusion

• Hypothesis: DNNs learn (semantic) concepts to detect objects, which are embedded in the latent 

space in different layers and thus learn a relationship between concepts and classes (objects).

• Results in the experiments support the hypothesis

• Most important extracted concepts are interpretable, but there are also non-interpretable concepts

• Question 1: Can we extract the concepts from a DNN model robustly?

• Stability tests show that concepts can be learned robustly

• Question 2: Can we use the concept to detect/show failures?

• Partially concept analysis can reveal spurious learned representations 
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Outlook
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Samples with Detections

ML Model

Sample-specific explanations (local) 
+ Concept-based explanations (global)

Why is there a person?

Validation Domain
Knowledge

Guided Adaptation of 
Data/Model Parameters
(fixing failures)

Tooling for V&V activities
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