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Martin Fränzle

Carl von Ossietzky University
Oldenburg, Germany

willem.hagemann@uol.de, paul.kroeger@uol.de,

martin.fraenzle@uol.de

This paper presents an approach for verifying the behavior of non-linear Artificial Neural Networks
(ANNs) found in cyber-physical safety-critical systems. More exactly, we implement a dedicated
sigmoid function propagator for the interval constraint propagation used in the satisfiability modulo
theories solver iSAT. Experimental results show that the proposed solution for verifying non-linear
ANNs using interval constraint propagation is more efficient regarding runtime and scalability on
different models when compared to existing approaches.
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1 Introduction

In the age of highly automated systems and the development of autonomous systems, a possible applica-
tion scenario for ANNs is to use them as controllers for cyber-physical safety-critical systems [5]. The
goal of cyber-physical safety-critical systems is to capture the often complex environment, analyze the
data and make control decisions about the future system behavior in such a way that it can guarantee
safety, without endangering human life. Whenever such guarantees are obtained via formal verification
of the system behavior, an ANN being a component of the system under analysis has also to be subject to
verification [13]. However, although the internal composition of nodes and connections in ANNs seems
to be suitable for classical verification methods, because of their non-linear activation functions, which
are hard to analyze, these methods are usually not scalable and suited for verification [13].

One goal in the verification of cyber-physical safety-critical systems, including ANNs, is to verify
their safety-critical properties. To this extent, satisfiability modulo theory (SMT) solvers are often used
for proving that a requirement is satisfied for a feasible assignment of environmental variables [8]. An-
other important aspect is that, in order to combine both automatic verification and ANNs with non-linear
activation functions, the solvers used must be able to handle non-linearity.

However, due to the complexity of ANNs, non-linear activation functions such as the sigmoid func-
tion can slow down the verification speed significantly [6]. In the literature, only restricted decidability
results for the verification of ANNs with non-linear and transcendental activation functions can be found
[5]. Such ANNs slow down the verification speed to such an extent that current solvers cannot handle
it in a reasonable time, and are only able to verify ANNs consisting of around 20 nodes [6]. Regard-
ing this, one of the promising approaches for verifying non-linear and transcendental activation function
networks is the iSAT solver [12]. iSAT makes use of interval constraint propagation where the target
is to contract intervals such that the constraint system is consistent throughout the box defined by the
contracted intervals [4].
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The iSAT solver reasons over the — in general undecidable — theory of Boolean combinations of
non-linear arithmetic constraints. It tightly couples the well-known Boolean decision procedure DPLL [3]
with interval constraint propagation (ICP) [11] for real arithmetic. In addition to basic arithmetic oper-
ations, iSAT also supports non-linear and transcendental operators. Given an input formula and interval
bounds of the real variables, iSAT searches for a satisfiable solution within the interval bounds.

The iSAT algorithm incorporates an alternation of deduction and decision steps. A decision step
selects a variable, splits its current interval and decides for one of the resulting intervals to be the search
space of the variable in the further course of the search. A deduction step then applies forward and back-
ward interval constraint propagation until either a fixed point is reached, or an empty interval is derived
which means that the formula is unsatisfiable under the current assumptions (decisions). The latter result
causes a revoke of deductions of interval bounds and a reversal of decisions which yields, if possible, a
decision for a yet unexplored part of the search space. If no decision for an unexplored part of the search
space is possible, the formula is proven to be unsatisfiable under the initial assumption of the bounds
on the search space. Since iSAT is able to deal with non-linear and transcendental functions, it seems
to be a promising tool for verification of ANNs employing sigmoid functions as activation functions.
ANNs such as Deep Learning (DL) architectures make use of the non-linear and transcendental sigmoid
function (and their evolved variations) in hidden and output layers [9]. However, iSAT does currently not
provide a dedicated interval constraint propagator for the sigmoid function or other non-linear activation
functions.

In this paper we show an approach for verifying non-linear ANNs by making use of a dedicated
sigmoidal interval constraint propagator integrated into an SMT solver. In our experiments, we demon-
strate that the proposed approach improves not only runtime performance but also scalability, being a
promising direction for the verification of non-linear ANNs.

2 Proposed Approach

As mentioned earlier, we aim at verification of ANNs using the sigmoid function as activation function.
The sigmoid function sig(·) is a bounded function from R to the open interval (0,1)⊆R and it is defined
as follows:

sig(x) :=
1

1+ e−x .

The graph of the sigmoid function is shown in Fig. 1. As iSAT has no built-in sigmoid function, we
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Figure 1: An example of an interval constraint propagation for the sigmoid function

used three different approaches to encode such ANNs into iSAT, namely a) an encoding of the sigmoid
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Algorithm 1: fwd propσ (X ,Y )
Input: X = (./1,x1,./2,x2), Y
y1 := bσc(x1);
y2 := dσe(x2);
./′1 := ./1;
./′2 := ./2;
if y1 =−∞ then ./′1 :=<;
if y2 =+∞ then ./′2 :=<;
Y ′ := Y ∩ (./′1,y1,./

′
2,y2);

return Y ′;

Algorithm 2: bwd propσ (X ,Y )
Input: X , Y = (./1,y1,./2,y2)
x1 := bσ−1c(y1);
x2 := dσ−1e(y2);
./′1 := ./1;
./′2 := ./2;
if x1 = 0 then ./′1 :=<;
if x2 = 1 then ./′2 :=<;
X ′ := X ∩ (./′1,x1,./

′
2,x2);

return X ′;

function in terms of a combination of operators available in iSAT (further referred as composed ap-
proach) s.t. an expression of the form z = sig(x) can equivalently be encoded as 1 = z(1+ exp(−x)),
b) an approximative approach inspired by NeVer [10] where the sigmoid function is approximated into
a piecewise-linear function for the interval [-8, 8] with a step size of 0.5, and c) a dedicated interval
constraint propagator for the sigmoid function which we implemented into iSAT.

In the remainder of this section, we report on the implementation details of the sigmoid propagator.
First, let us consider the defining property of a propagator of an unary function. Let f be an unary
real function and X ×Y the Cartesian product of two real intervals X and Y . We call (x,y) ∈ X ×Y
a feasible solution for f in X ×Y iff y = f (x). The interval constraint propagation for f applied to
X ×Y yields the smallest subset X ′×Y ′ of X ×Y such that any feasible solution in X ×Y is still a
feasible solution in X ′×Y ′. Fig. 1 depicts an example for an interval constraint propagation. To provide
further implementation details, we note that an interval I = {x | x1 ./1 x ./2 x2} can uniquely be written
as the 4-tuple (./1,x1,./2,x2), where ./1,./2 ∈ {<,≤} denotes the boundary type and x1,x2 ∈ R with
R := R∪{−∞,+∞} denotes the boundary values of the interval. We exploit that sig(·) is continuous
and strictly monotonic increasing. Hence, the interval bounds of X ′ and Y ′ of the propagation of X ×Y
for sig(·) can in general be computed as the images and preimages of the boundary values of X and Y .
The only special cases arise when the bounds of X are infinite, or when the bounds of Y are outside the
domain of sig(·). To this end, we extend the sigmoid function to R and formally define σ : R→ R and
its inverse σ−1 : R→ R as

σ(x) :=


0 if x =−∞

1
1+e−x if −∞ < x < ∞

1 if x =+∞,

σ
−1(y) :=


−∞ if y≤ 0
− ln(1

y −1)) if 0 < y < 1

+∞ if 1≤ y.

In iSAT, the propagation is split into two functions, the forward propagation step fwd propσ (X ,Y )
(Alg. 1) that returns the Y ′-component, and the backward propagation step bwd propσ (X ,Y ) (Alg. 2)
that returns the X ′-component of the propagation X ′×Y ′. As iSAT deals with floating point numbers,
Alg. 1 and 2 refer to variants dσe, bσc, dσ−1e, bσ−1c that implement a safe outward rounding of interval
bounds towards the indicated direction.

3 Experiments & Results

We evaluate the newly implemented dedicated sigmoid propagator and iSAT with a focus on runtime and
scalability. Based on the MNIST dataset [7] and a self-generated dataset of a simplified function of the
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Table 1: Distribution of neurons in hidden layers of ETCS & MNIST networks (fully connected & feed-
forward).

model name no. of layers neurons per layer total no. of neurons

ETCS-small 4 3–9 27
ETCS-big 4 25 100
ETCS-1 1 500 500
ETCS-2 2 250 500
ETCS-4 4 125 500
ETCS-8 8 62–64 500
ETCS-16 16 31–35 500
ETCS-32 32 14–18 500
ETCS-64 64 6–10 500
ETCS-125 125 4 500
MNIST-small 2 (784, 392, 196, 10) 588 hidden, 1 382 total
MNIST-big 2 (784, 784, 392, 10) 1 176 hidden, 1 970 to-

tal

moving block authorization of the European Train Collision System (ETCS) [1], a total of 12 different
neural network models were developed and trained using the Keras API [2]. In total, more than 150
experiments were generated, executed and analyzed with the neural network models.

The function modeled for the ETCS-based experiments provides an emergency brake advisory for a
following scenario of two trains depending on the maximum permitted speed and the trains’ position on
a track section. All neural networks of this type are based on the same independently generated dataset
containing 100 000 samples. Each network has an input layer with three input neurons and an output
layer with two output neurons. The number of hidden layers and neurons per hidden layers varies and is
shown in Tab. 1 (ETCS-*). The inputs are derived from the ETCS-model, this being the max. velocity,
the track position train 1, and the track position train 2. Here, the output neurons refer to the two possible
advisories for and against braking. In order to evaluate the efficiency of the iSAT solver on deep neural
network dimensions, we trained two neural network models based on the MNIST dataset. More exactly,
we developed two different variants of the MNIST neural network, both having two hidden layers. The
distribution of neurons among the layers is presented in Tab. 1 (MNIST-*).

Following, we compare the new dedicated sigmoid propagator’s runtime and scalability against the com-
posed approach and the approximation approach for each experiment. For all experiments, we used
verification targets supposed to be unsatisfiable as well as targets supposed to be satisfiable.

Also, for each experiment, we recorded the following benchmarks: the processor runtime, the solv-
ing time, i.e. the time from the beginning of solving (after preprocessing) to the end of the entire process.
Furthermore, we recorded the preprocessing time (processor runtime - solving time) in which the given
constraint system undergoes a transformation into an internal representation facilitating DPLL-based
solving as well as interval constraint propagation, and the number of variables including auxiliary vari-
ables introduced by the preprocessing step.

First, we compare the runtime of the new dedicated propagator against the composed approach on
the experiments, as can be seen in Fig. 2. Here, the x-axis represents the runtimes of the new dedicated
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Figure 2: Runtime comparison between the proposed and the composed approach.

sigmoid propagator and the y-axis represents the runtimes of the composed approach, with both axes be-
ing scaled logarithmically and where each data point describes a result of an experiment. The evaluation
setup sets a process timeout of five hours for each experiment, with the red line marking this limit. The
orange diagonal indicates the location of all points for which the runtime of both approaches is identical.
As can be observed, in most experiments, the new dedicated propagator has a better runtime. In run-
times where the composed approach had a runtime of more than 500 seconds, the new dedicated sigmoid
propagator had a runtime of fewer than 100 seconds. This also includes runtimes in which the composed
approach terminated due to a timeout of five hours.

0,1

1

10

100

1000

10000

0,1 1 10 100 1000 10000R
u

n
ti

m
e 

(s
ec

.)
 o

f 
ap

p
ro

xi
m

at
io

n
 a

p
p

ro
ac

h

Runtime (sec.) of new dedicated propagator

Runtime comparison
New dedicated propagator vs. approximation approach

Runtime data points

timeout 18000

18000
timeout

Figure 3: Runtime comparison between the dedicated propagator and approximation approach.

Furthermore, we compare the approximation approach inspired by NeVer against the new dedicated
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sigmoid propagator. Here, the new dedicated sigmoid propagator’s runtime is compared with the run-
times of the approximation approach in Fig. 3. As can be observed, in most experiments, the new
dedicated propagator has a better runtime. In contrast to the comparison with the composed approach
seen in Fig. 2, the new dedicated sigmoid propagator shows better runtimes even at runtimes below one
second. In many cases, the new dedicated sigmoid propagator has a runtime of fewer than 10 seconds,
especially where the approximation approach has runtimes from over 1 000 seconds up to a five hour
timeout.

Lastly, we evaluate iSAT on the different neural network dimensions presented earlier in Tab. 1
(ETCS-1 and following), where we consider only the results obtained from the new dedicated propagator.
Overall, in our experiments, the solver iSAT requires a longer solving time when more neurons appear
in a neural network. Furthermore, for the same number of neurons, the neural network structure can
also be a factor when considering the preprocessing time which indicates an apparent reference to an
optimizable process in the entire solving process. The preprocessing time depends only on the number
of variables in the considered constraint system, while the number of variables are increasing with the
number of summations in a neural network model. Thus, in the neural network models with 500 neurons
in the hidden layers, the ETCS-2 neural network model has a significantly higher preprocessing time with
about 195 000 variables in contrast to the ETCS-4 neural network model with about 145 000 variables. In
the case of the MNIST neural network models, the input layers consist of 784 neurons and the ETCS-*
models consist of only three input neurons, here, the number of variables being already over 1.1 million
in the MNIST-small model and over 2.7 million in the MNIST-big model. Ultimately, the size of the
sum given to the activation function significantly determines the preprocessing time of the iSAT solver.
Possible improvement approaches regarding preprocessing are a subject of our current research.

4 Conclusions

We investigated the verification of ANNs with non-linear activation functions using the iSAT solver,
with a focus on the sigmoid activation function. For this, we implemented a new dedicated sigmoid
propagator into the SMT solver iSAT and evaluated it regarding runtime. The evaluation revealed that
the new dedicated sigmoid propagator has better runtime behavior in verifying neural networks than the
composition of already implemented propagators. Also, when compared to the approximation approach
inspired by NeVer, the new dedicated sigmoid propagator showed a better runtime.

In further investigations, the algorithm of iSAT was analyzed for scalability with respect to the ver-
ification of neural networks that make use of the sigmoid function. Here, iSAT achieved a maximum
runtime of about 5 minutes for state-of-the-art neural network structures with few hidden layers and up
to 500 hidden layer neurons. As stated by the authors in [6], this is a significant increase in the num-
ber of neurons that can be handled. Furthermore, according to the approach in [10] of approximating
the sigmoid function, 48 hours runtime was already exceeded at a number of 64 hidden neurons. In
our experiments with a deep neural network model with 1 176 hidden neurons on the MNIST dataset,
iSAT could provide a decision within 3 hours. Despite these positive results, regarding the preprocessing
time of the iSAT solver, we discovered an already improvable factor which can speed up the solving
process even more. In conclusion, we showed that the algorithm of the SMT solver iSAT is suitable for
the verification of large ANNs with non-linear and transcendental functions such as the sigmoid activa-
tion function where the iSAT solver benefits from the implementation of a dedicated interval constraint
propagator.



D. Grundt, S.L. Jurj, W. Hagemann, P. Kröger, M. Fränzle 7
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